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Abstract:  In the present study, precipitation under the non-stationary conditions, driven by climate change, were modelled using 
a range of probability distribution functions. Trend tests were conducted on annual maximum precipitation data. 
Decreasing trends were observed at many stations and only two stations displayed increasing trends. Generalized 
Extreme Value (GEV) distributions, with both stationary and non-stationary parameters, were fitted to the time series 
obtained from various stations across Aegean Region. The parameters of the GEV distribution and the estimated 
return levels for various return periods were computed utilizing the exTremes and ismev packages within the R Studio 
open-source platform. The best models were selected using the Akaike information criterion (AIC) and Bayesian 
information criterion (BIC) The analysis revealed that for the trend observed stations, distributions with non-
stationary parameters offer a more accurate representation of the hydrologic processes. 

Key words: Frequency analysis; non-stationary frequency analysis; standard duration annual maximum precipitation; trend; 
generalized extreme value distribution. 

1. INTRODUCTION 

Climate change has led to significant shifts in the frequency and intensity of extreme 
hydrological events. These evolving phenomena challenge traditional frequency analysis, based on 
the assumption of stationarity (Milly et al., 2008). Stationarity, which underpins methods like return 
period analysis, assumes that hydrologic conditions are constant over time and lack long-term 
trends (Katz et al., 2002). However, emerging evidence suggests that this assumption may no longer 
hold as climate variability introduces changes to precipitation patterns (Sveinsson et al., 2003). 

Given the observed acceleration of hydrological cycles and the predicted impacts of climate 
change on extreme events, non-stationary frequency analysis has gained importance. This approach 
allows for temporal variability in hydrological processes, incorporating time-varying parameters 
into statistical models (Katz & Brown, 1992). Research shows that non-stationary models can better 
capture the complexities of extreme events under changing conditions, making them critical for 
future water resource planning (Villarini et al., 2009; Cunderlik & Burn, 2003). 

In the presented study, time series of observed annual maximum precipitation data for standard 
durations (t = 5, 10, 15, 30 minutes, and 1, 2, 3, 4, 5, 6, 8, 12, 18, 24 hours) from eight central 
meteorological stations in the Aegean Region were analysed for trends. To achieve this, non-
parametric Mann-Kendall and Spearman’s Rho tests, as well as the parametric Student’s t-test, were 
applied. For modelling and prediction, Generalized Extreme Value (GEV) distributions were fitted 
to the time series under both stationary and non-stationary assumptions across all periods. The GEV 
model was initially calculated under stationary assumptions, with the distribution parameters held 
constant, and precipitation return levels were derived for each period. In the first non-stationary 
model (GEV1), the scale parameter was modelled as a first-order function of time. In the second 
model (GEV2), the location parameter was modelled as a first-order function of time. In the third 
model (GEV3), both the scale and location parameters were modelled as first-order function of time 
and the corresponding return levels were calculated. In all models, the shape parameter was kept 
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constant. Model selection was based on the Akaike and Bayesian Information Criteria to identify 
the most suitable model for the process. Return levels of extreme precipitation for various periods 
were subsequently determined for both stationary and non-stationary models. The objective of this 
study is to identify the most accurate model for representing hydrological processes in the context 
of climate change. 

2. MATERIALS AND METHODS 

2.1 Literature review 

During recent decades, climate change has significantly impacted extreme weather events, such 
as floods, droughts and hurricanes (Lopez-Cantu et al. 2020). As the temperature rises, atmospheric 
water vapor increases, leading to extreme rainfall events. The frequency of these events is 
increasing and is becoming unpredictable (Ghasemi et al. 2021). Evaluating the probability of 
occurrence of these events is crucial for designing sustainable water structures and preventing loss 
in human lives  

Milly et al. (2008, 2015) stated that the assumption of stationarity may no longer be valid. 
Recently, many studies conducted in Turkey have increasingly questioned the hypothesis of 
stationarity in hydrological variables. For example, Zaifoğlu (2023) used non-stationary models for 
frequency analysis of hydrological data in the North Cyprus Basins. Aziz and Yücel (2020) 
emphasized that the frequency and return levels of hydrological variables cannot be considered 
stationary due to climate changes and other anthropogenic interventions. 

Wi et al. (2016) conducted an analysis utilizing rainfall data from 65 meteorological stations 
across South Korea, considering durations of 1, 6, 12, and 24 hours. In their study, both Generalized 
Extreme Value (GEV) and Generalized Pareto Distribution (GPD) models were applied to the time 
series of rainfall data, incorporating both stationary and non-stationary assumptions for the model 
parameters. The comparative analysis between these models revealed that return levels of 
precipitation derived from non-stationary models were consistently higher than those obtained from 
stationary models applied to the same dataset. This finding indicates that relying solely on 
stationary models for design purposes may lead to significant inaccuracies. 

In their study examining the non-stationary behaviour of extreme flood events, Gül et al. (2014) 
demonstrated that non-stationarity becomes increasingly pronounced with longer durations in flood 
data. Utilizing the GEV-CDN method for non-stationary frequency analysis, the study found that 
the model in which the location parameter varied over time exhibited the highest performance in 
capturing the non-stationary characteristics of the data. 

Oruç (2021) conducted a non-stationary frequency analysis using maximum rainfall data with 
durations of 5, 10, 15, and 30 minutes, as well as 1, 3, 6, and 24 hours, collected from 17 stations in 
the Black Sea Region. In this study, the non-stationary GEV distribution was employed, with the 
location and shape parameters modeled as time-varying, while the scale parameter remained 
constant. Rainfall data were fitted to GEV distributions under both stationary and non-stationary 
assumptions, and model performance was assessed using the Negative Log Likelihood (NLL). The 
findings indicated that GEV models with non-stationary parameters provided a better representation 
of the observed data according to model adequacy tests. 

These studies indicate that since non-stationary behaviour is likely to be observed in extreme 
rainfall events, it would be more appropriate to model, precipitation data considering non-stationary 
conditions. 

2.2 Data  

In this study, time series of observed annual maximum precipitation data for standard durations 
(t = 5, 10, 15, 30 minutes, and 1, 2, 3, 4, 5, 6, 8, 12, 18, 24 hours) were analysed, using data 
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collected from eight central meteorological stations located in the Aegean Province, as summarized 
in Table 1. The geographical positions of these stations within the region were mapped using 
ArcGIS, as illustrated in Figure 1. 

 
Table 1. Directorate general for state hydraulic works and state meteorological stations. 

Station No Station Name Observation Periods 
(Years) 

Average Annual Precipitation 
(mm/year) 

17155 Kütahya 1941-2010 563.6 
17186 Manisa 1958-2010 747.3 
17188 Uşak 1941-2010 557.6 
17220 İzmir 1938-2010 713.8 
17234 Aydın 1959-2010 661.7 
17237 Denizli 1959-2010 568.7 
17292 Muğla 1944-2010 1209.1 
18433 Balıkesir 1957-2010 599.4 

 

Figure 1. Central meteorological stations in the Aegean Region. 

2.3 Methods 

Initially, the time series of observed annual maximum precipitation data for standard durations (t 
= 5, 10, 15, 30 minutes, and 1, 2, 3, 4, 5, 6, 8, 12, 18, 24 hours), collected from eight central 
meteorological stations in the Aegean Province, were analysed using both parametric and non-
parametric trend tests, specifically The Student-T, Mann-Kendall and Spearman's Rho tests. 
Subsequently, Generalized Extreme Value (GEV) distributions, including stationary GEV and non-
stationary GEV1, GEV2, and GEV3, were fitted to the entire dataset. Model selection was guided 
by examining the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) 
values for each distribution, ensuring the most appropriate models were chosen. Return levels were 
then estimated for each station and each period, followed by a comparative analysis between 
stationary and non-stationary models. The flowchart in Figure 2 outlines the methods implemented 
in this study. 
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Figure 2. Flowchart of the study methodology. 

2.3.1 Trend Analysis 

Parametric trend tests can produce more reliable results for detecting the trends in variables 
fitting the normal distribution compared to non-parametric tests. But, hydro-meteorological data 
usually show a tendency to not to comply with the normal distribution (Onyutha, 2016).In a study 
conducted by Önöz and Bayazıt (2003) on trend analysis, The analysis indicated that when the 
hydrological process under investigation conforms to a normal distribution, the Student-t test 
performs better in trend detection compared to the Mann-Kendall test. However, it is observed that 
the performance of parametric tests decreases as the skewness coefficient of the data increases. In 
cases where the distribution skewness is low, the Student-t test performs as well as the Mann-
Kendall test. In the same study, it is stated that non-parametric tests perform better than parametric 
tests in trend detection regardless of the distribution type when the data are homogeneous. 

In a study conducted by Yue et al. (2002) it was established that the Mann-Kendall and 
Spearman’s Rho tests yield nearly identical results in trend analysis, indicating that using both 
methods together is not necessary. Furthermore, the study demonstrated that the performance of the 
Mann-Kendall test in trend detection varies dramatically depending on the probability distribution 
of the process under investigation. According to the study results, the Mann-Kendall test performs 
best in EV type3 distribution while exhibiting the lowest performance in Lognormal-2 distribution.. 

A study by Wang et al. (2020) indicates that the performance of the Mann-Kendall test decreases 
especially when the data size is small and/or the variance is large. 

Given the different findings regarding the performance of trend tests, both the parametric 
Student-t test and the non-parametric Spearman’s Rho trend test were utilized in this study, 
although it was expected that they would yield very similar results to the Mann-Kendall test. The 
comparison of the performance of trend tests in both trending and non-trending precipitation data is 
discussed in the findings section. 

2.3.2 Frequency analysis and distribution functions 

Frequency analysis is a method used to examine the occurrence rates of hydro-meteorological 
events. This type of analysis can be performed using either graphical techniques, such as frequency 
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histograms and polygons, or analytical approaches. In the analytical methods, probability 
distribution functions are first fitted to observed precipitation data to model the underlying patterns. 
Subsequently, the parameters of these distribution functions are estimated. In the present study, the 
Generalized Extreme Value (GEV) distribution, commonly utilized for modelling extreme values, 
has been employed, as the analysis focuses on annual maximum precipitation. 

The Generalized Extreme Value (GEV) distribution is a generalized mathematical expression 
that encompasses the first, second, and third forms of the Gumbel distribution. The probability 
distribution function of the GEV distribution is as shown in Equation 1: 

F(x) = exp �− �1 − κ(𝑥𝑥−ξ)
α

�
1/ξ
�  (1) 

The probability mass function given in Equation 1 expresses ξ as the location parameter, α as the 
scale parameter, and κ as the shape parameter determining the distribution type. When κ = 0, the 
GEV distribution transforms into the Gumbel distribution. When |κ| < 0.3, the shape of the GEV 
distribution resembles of the Gumbel distribution. When κ > 0, the distribution has an upper bound 
expressed by ξ + α / κ and conforms to the type 3 extreme value (EV) distribution. For κ < 0, the 
distribution's density function has a right-skewed tail and conforms to the type 2 EV distribution. 

The parameter models for the stationary and non-stationary GEV distributions utilized in the 
study are shown in Table 2. 

 
Table 2. GEV Models. 

Models  Parameters  

GEV α=constant ξ=constant κ=constant 

GEV1 α(t)= α0+α1t ξ=constant κ=constant 

GEV2 α=constant ξ (t)= ξ0+ξ1t κ=constant 

GEV3 α(t)= α0+α1t ξ (t)= ξ0+ξ1t κ=constant 

2.3.3 Selecting the best model 

The selection and validity of the model that most accurately represents hydro-meteorological 
time series data have a substantial influence on the reliability of future event predictions. 
Consequently, conducting goodness-of-fit tests is essential to identify the most appropriate model 
from those proposed. In this study, the Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) were employed to guide the selection of the model that best represents 
the data and provides the most realistic future forecasts. Although both AIC and BIC are used to 
assess model selection, AIC evaluates the goodness of fit of an estimated statistical model, whereas 
BIC is a measure of model complexity, particularly for parametric models with varying numbers of 
parameters. In model comparison, the model that produces the lowest AIC and BIC values is 
consistently preferred. 

Akaike Information Criterion, the maximized log-likelihood function of the model (θ̂�), and 𝑘𝑘 
denotes the number of independent parameters in the model, is represented in Equation 2: 

A𝐼𝐼𝐶𝐶 = −2𝐿𝐿𝑜𝑜𝑔𝑔 (θ̂�) + 2𝑘𝑘 (2) 

Bayesian Information Criterion, L(θ̂�) denotes the value evaluated at the logarithmic maximum 
likelihood estimate of the candidate model, 𝑘𝑘 indicates the number of estimated parameters in the 
candidate model, and n is the sample size, as shown in Equation 3: 

BIC=−2×logL(θ̂�)+k×log(n) (3) 
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3. RESULTS AND DISCUSSION 

The results of trend tests conducted on rainfall data obtained from meteorological stations within 
the scope of the study, as well as the most suitable models selected according to AIC and BIC 
values, are summarized in Tables 3 and 4. 

 
Table 3. Best Models for trend observed precipitation periods. 

Station 
Name 

Precipitation 
periods with trend  Student T  Mann-

Kendall 
Spearman’s 

Rho Best Model 

Aydın 30 Minutes to 12 
hours  Increasing 

trend  Increasing 
trend 

Increasing 
trend GEV3 

Balıkesir 5 Minutes  Decreasing 
trend  Decreasin

g trend 
Decreasing 

trend GEV2 

İzmir 30 Minutes to 24 
hours  Increasing 

trend  Increasing 
trend 

Increasing 
trend GEV3 

Kütahya 12 hours to 18 
hours  Decreasing 

trend  Decreasin
g trend 

Decreasing 
trend GEV3 

Manisa 24 hours  Decreasing 
trend  No trend Decreasing 

trend GEV 

Muğla 8 to 18 hours  Decreasing 
trend  Decreasin

g trend 
Decreasing 

trend GEV3 

 
Table 4. Best Models for precipitation periods without trend. 

Station 
Name 

Precipitation periods 
with no trend  Student T  Mann-

Kendall 
Spearman’s 

Rho Best Model 

Aydın 5 to 15 Minutes +  24 
hours  No trend  No trend No trend GEV 

Balıkesir 10 Minutes to 24 hours  No trend  No trend No trend GEV 
Denizli 5 Minutes to 24 Hours  No trend  No trend No trend GEV 
İzmir 5 to 15 Minutes  No trend  No trend No trend GEV 

Kütahya 5 minutes to 8 hours 
+24 hours  No trend  No trend No trend GEV 

Manisa 5 Minutes to 18 hours  No trend  No trend No trend GEV 
Muğla 24 hours  No trend  No trend No trend GEV 
Uşak 8 to 18 hours  No trend  No trend No trend GEV 

 
Although various researchers have noted that the performance of the Student's t-test may decline 

due to its assumption of normal distribution (e.g., Wilks, 2011; Yue et al., 2002), the results of this 
study show consistency across different statistical methods. As demonstrated in Tables 3 and 4, the 
findings from the Student's t-test align closely with those of the non-parametric Mann-Kendall and 
Spearman’s Rho tests, with the exception of the 24-hour precipitation data for Manisa. These results 
are in line with previous study (e.g. Şen, 2017), which suggests that non-parametric tests like Mann-
Kendall are often more robust for detecting trends in hydro-meteorological data, as they do not rely 
on normal distribution assumptions. 

For the 24-hour precipitation data in Manisa, both the parametric Student's t-test and the non-
parametric Spearman’s Rho test indicate a decreasing trend, while the Mann-Kendall test reveals no 
significant trend. This discrepancy highlights the sensitivity of different tests to distribution 
assumptions, as also noted by Burn and Elnur (2002), who found that parametric tests can 
sometimes suggest trends where non-parametric tests do not. However, when the results from Table 
4 are considered—showing that the Generalized Extreme Value (GEV) distribution is the most 
appropriate model for this dataset—it suggests that the conclusion drawn by the Mann-Kendall test, 
which indicates no significant trend, should be favored. Similar conclusions have been drawn in 
studies by Koutsoyiannis (2004) and Katz et al. (2002), where GEV distributions were found to 
better capture extreme precipitation events, reinforcing the importance of selecting the correct 
distribution model when assessing trends. 
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For precipitation periods where a trend is observed, models constructed with non-stationary 
parameters are identified as representing the most suitable distributions, as indicated by both the 
Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). The GEV2 and 
GEV3 models specifically were found to perform best, aligning with findings from other studies 
(Coles et al. 2001; Katz et al., 2002), which have shown that GEV distributions with non-stationary 
parameters are effective for modelling extreme values in precipitation data. This suggests that the 
use of non-stationary GEV distributions with two or three parameters would be appropriate in the 
design phase for precipitation periods exhibiting trends, a recommendation also supported by Katz 
and Brown (1992). 

As shown in Table 4, for precipitation periods where no trend is detected, the use of standard 
GEV distributions with stationary parameters proves more effective in representing the hydrological 
process. This finding is consistent with research by Hosking and Wallis (1997), who found that 
stationary GEV models better capture the behaviour of hydrological data without significant trends. 
Thus, conducting trend analyses for hydro-meteorological processes before advancing to the design 
phase is of paramount importance, as emphasized by studies like Burn and Elnur (2002) and Şen 
(2017), which argue for the necessity of comprehensive trend detection before the application of 
hydrological models. 

By integrating the results of this study with those from previous research, it becomes clear that 
the choice of statistical tests and distribution models has a significant impact on the interpretation of 
trends in hydro-meteorological data, and that non-parametric methods combined with appropriate 
distribution models offer a more reliable approach for such analyses. 

4. CONCLUSION AND RECOMMENDATIONS 

In this study, precipitation processes under non-stationary conditions, driven by projected 
climate change, were modelled using various probability distribution functions. Trend tests were 
applied to the annual maximum precipitation data. Regardless of the trend test outcomes, both 
stationary and non-stationary Generalized Extreme Value (GEV) distributions were fitted to the 
data from different time periods across various stations. The GEV distribution parameters, 
goodness-of-fit metrics, and expected return levels for different return periods were calculated using 
the exTremes and ismev packages in the R Studio open-source software. The results indicated that 
non-stationary distributions are more appropriate for modelling precipitation periods exhibiting 
trends. 

Based on the findings of this study, different cities exhibit varying trends in precipitation 
patterns, and appropriate statistical models must be employed to accurately capture these 
behaviours. The following conclusions and recommendations are made: 

For Aydin station, precipitation durations of 5, 10, 15 minutes, and 24 hours, have shown no 
significant trends. Therefore, the use of a stationary Generalized Extreme Value (GEV) distribution 
is recommended. For 30-minute and 1- to 12-hour precipitation, an increasing trend was observed, 
suggesting that the non-stationary GEV3 distribution is more appropriate for capturing these 
changes. 

For Balıkesir station, a decreasing trend was identified for 5-minute precipitation, for which the 
non-stationary GEV2 distribution is recommended. For all other time intervals, where no trend was 
observed, the stationary GEV model is deemed suitable. 

For Denizli station, since no trends were observed for any of the precipitation durations, the 
stationary GEV distribution is appropriate across all time intervals. 

For Izmir station, 5, 10, and 15-minute precipitations have shown no significant trends, making 
the stationary GEV model suitable. However, for 30-minute and 1- to 24-hour precipitation, an 
increasing trend was observed, necessitating the use of the non-stationary GEV3 distribution. 

For Kütahya station, a decreasing trend was identified for 12- to 18-hour precipitation durations, 
where the non-stationary GEV3 distribution should be applied. For all other intervals with no 
observable trends, the stationary GEV model is recommended. 
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For Manisa station, no trends were observed for any precipitation durations, thus the stationary 
GEV distribution is appropriate for all time intervals. 

For Muğla station, 8- to 18-hour precipitations have shown a decreasing trend, and the non-
stationary GEV3 distribution is recommended. For other durations, the stationary GEV model is 
suitable, as no significant trends were found. 

For Uşak station, no observable trends were detected for any precipitation periods, so the 
stationary GEV distribution can be employed across all time intervals. 

In cities like Aydın and İzmir, where increasing trends were observed, especially in short-
duration and high-intensity precipitation events, flood risks may be underestimated if stationary 
models are used. It is therefore essential to consider non-stationary return levels in flood modelling 
to more accurately assess future risks. A review of current flood risk management strategies using 
non-stationary frequency analyses is strongly recommended for these regions. 

In regions such as Muğla and Kütahya, where decreasing trends were identified, particularly for 
longer-duration precipitation, a more comprehensive investigation into the implications of these 
trends on agriculture and water resources is necessary. These decreasing trends may indicate a 
heightened risk of meteorological drought, which could adversely impact agricultural productivity 
and water availability. Therefore, targeted studies focusing on drought risk and long-term water 
resource management are advised for these areas. 

In summary, this study underscores the importance of using both stationary and non-stationary 
models depending on the trends identified in regional precipitation data. Future risk assessments, 
particularly in hydrological and agricultural planning, should account for these variations to ensure 
effective resource management and disaster preparedness. 
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