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Abstract:  This paper focuses on the analysis of the heights relative to the average of the water level at different stations of the 
River Po, in Italy, testing if there are linear trends in its behaviour. The most interesting result obtained in the work is 
that under the assumption of I(0) behaviour for the error term, several time trends are found to be statistically 
significant. However, allowing the order of integration to be unknown and estimated from the data, the series display 
long memory patterns, and most of the time trend coefficients become now insignificantly different from zero. 
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1. INTRODUCTION 

This paper deals with the analysis of the water level in the River Po by looking at eight different 
locations and testing if there are significant trends in its behaviour across time. For this purpose we 
use linear regression models where first the errors are assumed to be well behaved, in the sense that 
it is supposed that they are integrated of order 0 (also named short memory). Then, the possibility of 
long memory errors is also taken into account, and we will observe then that the estimated values of 
the time trend coefficients are radically different.  

Long memory is a property of the data that has been observed in many time series in different 
contexts, including hydrology. In fact, Hurst (1951) was the first that heuristically proved the 
presence of long memory in the series of annual minima of the Nile River. This property (long 
memory) is so called because the observations display a large degree of association even being 
distant in time. Following this pioneering work, many studies have proved the existence of long 
memory in hydrological data (e.g., Hipel and McLeod, 1994; Montanari et al., 1996; Pelletier and 
Turcotte, 1997; Montanari and Rosso, 1997; Corduas and Piccolo, 2006; Mudelsee, 2007; 
Koutsoyiannis and Montanari, 2007; Gil-Alana, 2009; Iliopoulou et al., 2018; Habid, 2020; Li et al., 
2021). A proper description of the long memory property and its applications in hydrology is 
described in the methodological section.  

The water level of the River Po has been examined in many scientific works. Many authors have 
investigated the Po River from a hydrological viewpoint, including among others Marchi (1994), 
Visentini (1953), Piccoli (1976) and Zanchettini et al. (2008), while others have focussed more on a 
time series viewpoint, examining the property of long range dependence or long memory in the 
data. Examples on this account are the papers by Cohn and Lins (2005), Mudelsee (2007), 
Koutsoyiannis (2003, 2010) and Montanari (2012). Marchi (1994) investigated hydraulical aspects 
of the River Po flood occurred in 1951, and the same flood was earlier studied by Visentini (1953), 
while Montanari (2012) examined changing patterns in the river discharge; Piccoli (196) studied the 
River Po floods during the time period 1900 - 1970, and Zanchettini et al. (2008) extended the 
analysis to 300 years of data. In a more recent study, Manzo et al. (2018) perform spatio-temporal 
analysis of river plume dispersion for the identification of zones sensitive to water discharge, 
proving geostatistical patterns of turbidity linked to meteo-marine forcing. They implement the 
analysis in the Po River prodelta for the time period 2013-2016. Other recent papers involving 
River Po data are Ninfo et al. (2018) and Formetta et al. (2022). 
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The objectives of this article are twofold. First, we want to investigate if long memory is present 
in the river Po data, and based on this hypothesis, we examine the presence of linear time trends. 
The rest of this paper is structured as follows: Section 2 briefly describes the methodology used. 
Section 3 presents the dataset examined. Section 4 is devoted to the empirical results, while section 
5 contains some concluding comments. 

2. METHODOLOGY AND A SHORT LITERATURE REVIEW 

Hurst (1951, 1957) was the first in using the concept of long memory in a hydrological context. 
He examined records on the level of the River Nile, noticing that the series exhibited a persistent 
trend-cyclical pattern over a certain period, but when the same data were observed for a longer 
period, this persistent behaviour tended to disappear. 

In a more rigorous way, we say that a (covariance) stationary process {xt, t = 0, ±1, …} displays 
the property of long memory (sometimes called long range dependence or strong dependence) if the 
infinite sum of the autocovariances, denoted by γu = Cov(xt, xt+u),  is infinite, i.e., 

 .lim ∞=∑
−=

∞→

T

Tj
uT γ  (1) 

Alternatively, and using the frequency domain, if we define the spectral density function, f(λ) as 
the Fourier transform of the autocovariances, we say that xt is long memory if that function is 
unbounded at some frequency λ in the interval [0, π], e.g., as the frequency approaches zero, i.e., 

,0,)( +→∞→ λλ asf  (2) 

(see McLeod and Hipel, 1978). Though there exist many models satisfying the above two 
properties, (for instance, the Fractional Gaussian noise model proposed in Mandelbrot and Wallis, 
1969), in practice, one model, very commonly used in time series, is the one based on the concept 
of fractional integration. 

We say that xt is fractionally integrated, or integrated of order d, and denoted as I(d) if it admits 
the following representation, 

,...,1,0,)1( ±==− tuxL tt
d  (3) 

with xt = 0 for t  ≤  0, and d > 0, where L is the lag -operator ( 1−= tt xLx ) and tu  is I(0) or short 
memory, defined as a covariance stationary process where the infinite sum of the autocovariances is 
finite or, alternatively in the frequency domain, as a process with a spectral density function that is 
positive and finite at all frequencies. Note that by using a Binomial expansion on the polynomial in 
L in the left hand side of (1), xt can be expressed in terms of all its past history, adopting the form of 
an infinite AR process, 
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and thus, the fractionally integrated parameter d can be taken as a measure of the degree of 
persistence of the data, since the higher the value of d is, the higher the association between 
observations is, even if they are far apart in time. Long memory is satisfied as long as d is positive. 
The specification described in (3) is very general and allows us to consider a wide range of 
alternatives, including  

i. short memory processes, if d = 0, 
ii. long memory covariance stationary processes, if 0 < d < 0.5, 

iii. nonstationary though mean reverting processes (0.5 ≤  d < 1),  
iv. unit roots (d = 1), and 
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v. explosive processes (d ≥ 1). 
 
Thus, long memory holds if d > 0; stationary remains valid for d < 0.5, and shocks will revert to 

their original trends (i.e., showing a transitory effect) if d < 1, while d ≥ 1 indicates lack of 
reversion and permanency of shocks. 

Granger (1980, 1981), Granger and Joyeux (1980) and Hosking (1981) were the first to propose 
these types of models, and they have been widely used since then in the modelization of time series 
in many disciplines including climatology (Bloomfield, 1992; Koscielny-Bunde et al., 1998; 
Percival et al., 2001; Monetti et al., 2003; Gil-Alana, 2005, 2012, 2017; Ludescher et al., 2016; 
etc.), economics (Sowell, 1992, Crato and Rothman, 1994; Gil-Alana and Robinson, 1997); finance 
(Baillie et al., 2007; Abbritti et al., 2016), internet traffic time series data (Karagiannis et al., 2004), 
energy (Elder and Serletis, 2008; Gil-Alana and Gupta, 2014) and of course also in hydrology. 
Within this latter area of research, we could mention the papers by Montanari et al. (1997), Rao and 
Bhattacharya (1999), Corduas and Piccolo (2006), Mudelsee (2007), Szolgayova et al (2014), 
Maftei et al. (2016), etc. Montanari et al. (1997) applied several models based on fractional 
integration in the analysis of monthly and daily inflows of Lake Maggiore, Italy. Rao and 
Bhattacharya (1999) examined monthly and annual data, including average monthly streamflow, 
maximum monthly streamflow, average monthly temperature and monthly precipitation, at various 
stations in the mid-western United States. They found no evidence of long memory with the 
monthly data and inconclusive results with the annual ones. Corduas and Piccolo (2006) used a 
fractional ARIMA (ARFIMA) model that incorporates both long memory and short memory 
components in the analysis of hydrological data. Mudelsee (2007) examined 28 long time series 
from six European, American and African rivers, finding evidence of long memory in all them, and 
being explained in terms of spatial aggregation of the data. Maftei et al. (2016) found evidence of 
long range dependence and trends in the Taita River discharges. Other authors such as Montanari et 
al. 2000; Ooms and Franses, 2001; Lohre and Sibbertsen, 2001; Wang et al., 2002, though focusing 
also on the long memory property, also investigated the issue of seasonality on the data. 

3. DATA 

We use data of water level time series variations around average height at the River Po, Italy, 
collected at eight specific locations (Table 1) and obtained from Schwatke et al. (2015) from the 
Database for Hydrological Time Series of Inland Waters (DAHIT, https://dahiti.dgfi.tum.de 
/en/virtual_stations). The database is maintained by the Deutsches Geodätisches Forschungsinstitut, 
at the Technische Universität München, and contains data from different stations all over the world. 
For Italy, there are 40 virtual stations and the eight series for the River Po are: 1076 (11.36 °E, 
44.98 °N); 1130 (10.65 °E, 44.95 °N); 1137 (11.23 °E, 45.05 °N); 4416 (12.08 °E, 44.97 °N); 
10350 (11.57 °E, 44.92 °N); 10361 (10.99 °E, 45.06 °N); 10368 (10.48 °E, 44.94 °N) and 10369 
(11.91 °E, 44.98 °N). The starting and ending dates along with other features of the data are 
reported in Table 1 and the time series plots are displayed in Figure 1. 

 
Table 1. Description of the water level time series 

Number Longitude Latitude Starting date Ending date No. of observations 
1076 11.3560 44.9847 09-07-2002 31-08-2010 77 
1130 10.6542 44.9542 28-07-2002 19-09-2010 75 
1137 11.2347 45.0456 15-05-2002 20-10-2010 82 
4416 12.0826 44.9747 20-06-2002 15-05-2016 106 
10350 11.5650 44.9190 25-07-2008 25-04-2019 290 
10361 10.9886 45.0634 26-07-2008 27-04-2019 394 
10368 10.4633 44.9373 12-08-2002 01-06-2016 112 
10369 11.9145 44.9751 05-07-2002 29-05-2016 109 

https://dahiti.dgfi.tum.de/en/virtual_stations�
https://dahiti.dgfi.tum.de/en/virtual_stations�
https://www.dgfi.tum.de/�
https://www.tum.de/�
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Figure 1. Water level time series plots 
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4. EMPIRICAL RESULTS 

Since we are interested in estimating linear trends, the first model we consider is the following: 

,...,2,1;t10ty =++= txtββ  (4) 

where yt indicates the time series we observe, in our case, the water level variations around the 
average height for each of the specific locations examined; β0 and β1 are unknown parameters to be 
estimated from the data and correspond respectively to an intercept and a linear time trend, and xt is 
the error term that it is initially supposed to be I(0), i.e., short memory. Since we are specifically 
interested in estimating β1, we test then the null hypothesis, 

,01oH == β  (5) 

in equation (4) against the alternative: β1 ≠ 0. Here, we suppose that xt is a white noise process, and 
the estimated coefficients for each of the specific locations are displayed in Table 2. We also tried 
with weak autocorrelation in xt, and the results were very similar to those based on white noise 
errors. If xt is an AR(1) process, we use the Prais-Winsten (1954) transformation, obtaining a t-
statistic, which converges in distribution to a N(0,1) random variable. 
 

Table 2. Estimates of β0 and β1 in the model: yt = β0 + β1t + xt 

Series number Intercept, β0 (t-value) Time trend, β1 (t-value) 

1076 0.0420   (0.16) -0.0010   (-0.18) 
1130 -0.6170   (-1.72)  0.0162   (1.98) 
1137 -0.0452   (-0.14)  0.0027   (0.41) 
4416 -0.2251   (-1.68)  0.0042   (1.70) 
10350 0.6922   (3.84) -0.0047   (-4.42) 
10361 0.6621   (4.18) -0.0033   (-4.83) 
10368 -0.8444   (-2.69)  0.0149   (3.10) 
10369 -0.5381   (-1.93)  0.0097   (2.22) 

In italics, significant coefficients at the 5% level. 
 
We observe that for six out of the eight locations, the time trend coefficient becomes statistically 

significantly different from zero. It is positive in the cases of 1130, 4416, 10368 and 10369, and 
negative for 10350 and 10361. In the cases of 1076 and 1137, the β1-coefficient is found to be 
insignificant. However, these coefficients have been obtained under the strong assumption that the 
error term displays short memory behaviour, i.e., it is assumed to be I(0), which is a strong 
assumption which might not be satisfied in the context of hydrological data. Thus, in what follows, 
we estimate β0 and β1 along with the order of integration of the error term, i.e., d, by means of using 
a model that combines equations (3) and (4), i.e., 

,...,2,1,)1(;t10ty ==−++= tuxLxt tt
dββ  (6) 

where ut is now the process to be I(0). 
Table 3 displays the estimated coefficients under the assumption that the I(0) term is 

uncorrelated (white noise), while in Table 4 we impose autocorrelated disturbances by means of 
using a non-parametric approach proposed by Bloomfield (1973). This model of Bloomfield (1973) 
is not explicitly defined but is described only in terms of its spectral density function, which is 
given by: 
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where σ2 is the variance of ut and m refers to the last of the Fourier frequencies which is associated 
with the short-run dynamic components. He showed that the above expression approximates very 
well the spectrum of highly parameterized ARMA processes and thus can be used as an 
approximation for I(0) autocorrelated processes. The estimation is carried out in both cases by 
means of the Whittle function in the frequency domain (see, e.g., Dahlhaus, 1989) throughout a 
procedure developed in Robinson (1994), and in which functional form can be found in any of its 
numerous applications in several fields (see, e.g., Gil-Alana and Robinson, 1997). 

Starting with the results based on white noise errors (Table 3) the first thing we observe is that 
the I(0) hypothesis is rejected in all cases, since the estimates of d are significantly positive in all 
locations. The values range between 0.15 (4416) and 0.43 (10361), and surprisingly, none of the 
time trend coefficients are found to be statistically significant. 
 

Table 3. Estimates of d, β0 and β1 in the model: yt = β0 + β1t + xt,  (1-L)dxt = ut and white noise ut. 

Series number d (95% interval) Intercept, β0 (t-value) Time trend, β1 (t-value) 

1076 0.35  (0.20,  0.57) 0.3998  (0.67) -0.0050  (-0.38) 
1130 0.19   (0.05,  0.41) -0.4576   (-0.77)  0.0139   (1.07) 
1137 0.29   (0.14,  0.55) 0.6511  (0.99) -0.0075   (-0.56) 
4416 0.15   (0.04,  0.32) -0.1350   (-0.56)  0.0028   (0.76) 

10350 0.39   (0.30,  0.50) 0.2767   (0.40) -0.0030   (-0.72) 
10361 0.43   (0.36,  0.51) 0.0092  (0.01) -0.0012   (-0.35) 
10368 0.35   (0.20,  0.55) -0.0075   (-0.01)  0.0034   (0.27) 
10369 0.25   (0.10,  0.45) -0.3469   (-0.60)  0.0059   (0.67) 

 
Table 4. Estimates of d, β0 and β1 in the model: yt = β0 + β1t + xt,  (1-L)dxt = ut and autocorrelated ut. 

Series number d (95% interval) Intercept, β0 (t-value) Time trend, β1 (t-value) 
1076 0.11   (-0.10,  0.43) 0.1151   (0.35) -0.0019   (-0.27) 
1130 0.01   (-0.18,  0.25) -0.6170   (-1.76)  0.0162   (2.02) 
1137 0.24   (0.02,  0.81) 0.4626  (0.79) -0.0049   (-0.42) 
4416 0.16   (-0.07,  0.58) -0.1269   (-0.51)  0.0027   (0.71) 

10350 0.28   (0.12,  0.48) 0.4745   (0.99) -0.0038   (-1.37) 
10361 0.45   (0.29,  0.65) -0.0598  (-0.07) -0.0010   (-0.27) 
10368 0.15   (-0.09,  0.53) -0.6037   (-1.30)  0.0111   (1.62) 
10369 -0.02   (-0.27,  0.28) -0.5516   (-2.20)  0.0100   (2.53) 

In italics, significant coefficients at the 5% level. 
 
If we allow for autocorrelated errors throughout the model of Bloomfield (1973) (Table 4), we 

notice that for five locations the I(0) hypothesis cannot be rejected, though the estimates of d are 
relative far from zero in some cases. This is due to the wide confidence bands in some cases as a 
consequence of the small sample sizes. However, the time trend coefficients remain once more 
insignificantly different from zero in the majority of the cases. In fact, there are only two locations 
where the time trend is significantly positive (1130 and 10369) which are precisely the two 
locations with the estimates of d around 0 (0.01 and -0.02). For the rest of the cases, the values of d 
range between 0.11 (1130) and 0.45 (10361) and the time trends are insignificant in all cases. 

5. CONCLUSIONS 

We have examined in this article eight stations at the River Po, Italy in order to determine the 
existence of time trends and potential long memory features. A natural conclusion derived from this 
paper is that it is very important to determine the nature of the error term in the analysis of 
hydrological data because otherwise we may draw invalid conclusions about the properties of the 
data. Thus, for example, if we impose a priori that the errors are well behaved in the sense that they 
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are I(0) or short memory, and we estimate the (linear) time trend coefficients, our results based on 
the water level at the River Po indicate that the time trends are statistically significant. However, if 
we remove this assumption and allow the error term to be I(d) where d is a potentially fractional 
value, jointly estimated with the other parameters in the model, we find evidence in favour of long 
memory patterns (i.e., d > 0), and the significance of the time trend coefficients disappear in the 
majority of the cases. This evidence of long memory is consistent with many other previous works 
based on water flows since the seminal papers by Hurst (1951, 1956) and is a feature that should be 
taken into account when modelling this type of data. Further work should also analyse the potential 
presence of structural breaks in the data, since this is an issue that is very much related with the long 
memory characteristic observed in the data. 
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