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Abstract:  This study aims to enhance the reliability of early warning signals for potentially catastrophic high flows by 
integrating a machine learning (ML) model with a conceptual hydrological model. The hydrological model underwent 
an independent calibration process, including standard stages of calibration and verification. Both the inputs 
(precipitation and evapotranspiration) and the outputs (simulated discharge) of the hydrological model were utilized 
as inputs for the ML model, resulting in a significant improvement in the detection of extreme events, such as the 
exceedance of a predetermined discharge threshold, and more accurate estimation of their likelihood. A novel 
approach employed in this study involved utilizing different thresholds during the training and test periods, which 
effectively enhanced the training of the ML model. Achieving a desirable balance between false negatives and false 
positives is crucial in configuring early warning systems, and the proposed ML model provides essential information 
to accomplish this. This empowers the modeler to achieve the desired balance and enhance the overall performance of 
the early warning system. 
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1. INTRODUCTION 

More than 50 years have passed since the introduction of the multilayer perceptron machine 
learning model (Minsky and Papert, 1969), while the first applications in hydrology started to 
emerge more than 25 years ago as rainfall-runoff models. Specifically, Minns and Hall (1996) were 
among the first to apply recurrent neural networks (RNN) in a hydrological application. These early 
data-driven models were relatively simple, with at most two hidden layers and up to a dozen hidden 
nodes, and lagged behind in performance compared to traditional hydrological models. However, 
with advancements in computational power, more complex machine learning (ML) networks, such 
as long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997), started appearing  in 
various hydrological applications, outperforming traditional approaches in areas like flood 
prediction, water resources management, stochastic analysis, etc. (Lin et al., 2020; Xu et al. 2020; 
Rozos 2019; Rozos et al. 2021). LSTM networks provide nodes with dynamic states, acting as 
memory, to enhance overall performance. Studies have demonstrated the superior generalization 
capacity of LSTM models over hydrological models in streamflow simulation and catchment 
analysis (Lees et al. 2021). While LSTM models surpass conventional models in capturing 
information from extensive hydrological datasets, the effectiveness of LSTM models comes at the 
expense of increased computational complexity. Alternative approaches involve using ML as a pre-
processing tool for data analysis, or as a post-processing tool for the outputs of a hydrological 
model. ML has also been used to detect anomalies, estimate probability distributions, quantify 
uncertainty, and improve peak flow estimation and flood forecasting. In this study, it is showcased 
that the combined use of a machine learning (ML) model and a hydrological model surpasses the 
performance of using the hydrological model alone, particularly in detecting extreme events within 
an early warning system. 

Let's consider a well-calibrated hydrological model that has reached its optimal overall 
performance. For instance, attempting to improve the simulation of peak flows results in a 
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deterioration of the base flow simulation.  Let's also assume that it is important to predict the 
exceedance of a specific discharge threshold at a particular cross-section. One could recalibrate the 
hydrological model by selecting a suitable objective function that places greater emphasis on errors 
at high flows. However, creating a specific and different objective function for each case study may 
not be feasible or easy. On the other hand, employing removable layers or easily changeable add-
ons within the operational application of a hydrological model provides greater flexibility compared 
to the extensive reconstruction of the model. This approach allows for efficient adaptation to 
multiple purposes without the need for modifying the hydrological model setup, which can be 
challenging, especially in certain commercial packages with limited customization options. 

For this reason, this study proposes processing the results of a hydrological model using an ML 
model to estimate the likelihood of surpassing a specific flow threshold at a designated control 
point, which represents a critical cross-section of a river segment or canal. It should be noted that a 
combination of a hydrological model with an ML model has already been used by other researchers. 
For example, Senent-Aparicio et al. (2019) used ML models to estimate the instantaneous peak flow 
from the daily average obtained from the SWAT model. Similarly, Noymanee and Theeramunkong 
(2019) compared several alternative statistical and ML techniques to improve flood forecasting 
performance based on MIKE 11 simulations. Also, Rozos et al. (2022) and Rozos (2023) have 
employed ML in order to assess the performance of hydrological models and the potentials for 
further performance improvement. The present study differs from the aforementioned in that instead 
of trying to improve the performance of a hydrological model, we directly focus on improving the 
reliability of the warning signal. This concept was introduced by Rozos and Dimitriadis (2022) and 
is further elaborated and tested in this study. 

2. MATERIALS AND METHODS 

2.1 The hydrological model 

The hydrological model employed in this study was the LRHM (Rozos, 2020), which integrates 
two fundamental structural modelling components, namely the direct runoff and soil moisture 
models, and utilizes linear regression techniques to simulate observed runoff. This approach is 
based on the concept of genetic programming models (Herath et al., 2021). The schematic 
representation of LRHM is shown in Figure 1. 

 

Figure 1. Schematic representation of the hydrological model LRHM. 

2.2 The integration with the ML model 

 Early warning systems send alarm signals that are binary in nature, where a value of 1 indicates 
an exceedance and 0 represents a non-exceedance event. Therefore, a suitable classification method 
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such as logistic regression (Anderson, 1982) is considered the fundamental choice. Because the 
inputs of the ML model are time series, i.e., are not independently and identically distributed, a 
recurrent layer should be employed (Zhang et al., 2021). The topology of the ML network is simple. 
It employs a hidden layer with a minimal number of nodes (Figure 2) of the LSTM type. The inputs 
of the ML network include the inputs and outputs of the hydrological model. More specifically, the 
inputs are the precipitation, the evapotranspiration, and the simulated values by the hydrological 
model LRHM. The activation function between the layers is the sigmoid function used in logistic 
regression to estimate the conditional probability of a binary variable taking the values {0, 1} (see 
Equation 2.5 in Anderson, 1982; Serpa, 2022). 

S(x) = 1 / (1 + exp(–x)) (1) 

For training the ML model, the logistic regression cost function is used (see Equation 4-17 in 
Géron, 2019), also known as the binary cross-entropy cost function, which is derived using the 
maximum likelihood estimation method (see Equation 2.6 in Anderson, 1982). If y is the target time 
series (taking values 0 and 1), p is the time series with the likelihood of y being 1, as estimated by 
the ML model, and m is the length of the time series, then the cost function is given by: 

J = –1/m Σ (y log(p) + (1–y) log(1–p) ) (2) 

The ML model was implemented using the Cortexsys tool, which runs on MATLAB or GNU 
Octave. The hydrological model used in this study is LRHM (Rozos, 2020), which takes two inputs: 
precipitation time series (R) and evapotranspiration (E). The hydrological model produces the 
simulated discharge, Qh. To prepare the inputs for the ML model, R, E, and Qh were subjected to z-
score normalization. These normalized values were then used as inputs for the ML model, as shown 
in Figure 2. 

 

Figure 2. ML network topology. 

The output of the ML model, i.e. the p in Equation (2), is a time series with values between 0 and 
1, where 1 corresponds to a 100% probability of exceeding the threshold. An empirical rule to be 
considered is the Rule of 10 (a.k.a one in ten rule), according to which there should be at least 10 
events per explanatory variable in the observed time series (Harrel et al., 1984). For the three inputs 
of the ML network used in this study, this rule implies a minimum of 30 events in the training set. 
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To determine whether an alarm signal should be issued based on the output p of the ML model, 
the output is compared to a predetermined cut-off value. This value balances the trade-off between 
true positives (desired) and false negatives (undesired) values. Increasing one of these values often 
leads to an increase in the other, creating a delicate balance. Selecting the ideal cut-off value 
becomes a policy decision, as it involves finding the optimal trade-off point. While it is crucial for 
the model to detect all relevant events, an excessive number of false alarms can lead to desen-
sitization of the response from social mechanisms, rendering the system ineffective in practice. 

2.3 Case study – Sieve River 

In line with the objective to enhance the reliability of early warning signals for potentially 
catastrophic high flows, Rozos and Dimitriadis (2022) tested the integration of a conceptual 
hydrological model with a machine learning (ML) model in Karveliotis River, Greece. In this study, 
this integration is tested in Sieve River at Fornacina, Tuscany, Italy. The catchment area of Sieve 
River is 846 km2. The observed data include the mean areal hourly rainfall, evapotranspiration and 
discharge at the basin exit. The period of the available data starts on 3 June 1992 and ends on 2 
January 1997 (36,554 time steps, with a gap in the data from 1 January 1995 to 2 June 1995). The 
flow regime of Sieve River is intermittent. The annual rainfall is 1190 mm/year. More information 
regarding this location (map, description of geomorphological characteristics, source of data) can be 
found in Koutsoyiannis and Montanari (2022). The observed and simulated discharge of Sieve 
River is displayed in Figure 3. From this figure, it becomes evident that the hydrological model fails 
to detect the high flows taking place before January 1997. 

 

Figure 3. Simulated, with the LRHM hydrological model, and observed discharge of Sieve River. 

In the training period (1 June 1992 to 31 December 1995) the ML model was trained to detect 
exceedances of a discharge threshold equal to 250 m3/s. This value was selected to ensure an 
adequate number of events in the training data, following the Rule of 10. Then, the ML model was 
applied in the test period to detect exceedances of a discharge threshold equal to 580 m3/s, which is 
a value dictated by the hydraulic conditions, i.e., the capacity of a critical cross-section. 

3. RESULTS AND DISCUSSION 

Figure 4 displays the output of the ML model for the events of the training period. The vertical 
axis corresponds to the likelihood of exceedance, as it is estimated by the ML model. If the 
estimated likelihood exceeds a cut-off value (0.23 in this case) then a warning signal is issued (red 
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circles on the upper horizontal axis). The yellow cross marks on the upper horizontal axis indicate 
that the simulated discharge by the hydrological model exceeds the threshold (250 m3/s for the 
training period). The blue “×” marks indicate that the observed discharge exceeded the threshold. 
According to this figure, for the training period, there is one event (close to time step 25000) of 
which the discharge is underestimated by the hydrological model. The ML model also fails to detect 
this event. Close to time step 16000 the hydrological model overestimates the discharge. The ML 
model accurately avoids false positive for this case. 

 

Figure 4. Exceedance of 250 m3/s during the training period. 

 

Figure 5. Exceedance of 580 m3/s during the test period. 

Figure 5 displays the events of the test period. In this period, the observed discharge values are 
not available to the system, only the precipitation and evapotranspiration, which in operational 
conditions will be provided by a forecast service. Based on this figure, it is evident that a cluster of  
events occurred towards the end of the test period, all of which exhibit an underestimation of 
discharge by the hydrological model. However, the ML (which processes the outputs of the 
hydrological model along with precipitation and evapotranspiration) successfully issues a signal for 
these events. The ML model gives one false positive just before time step 4000. 

The conventional approach in ML training involves employing a single exceedance threshold for 
both the training and test periods. This threshold is typically determined based on the specifications 
of the real-world hydraulic system under study. However, this approach may benefit from further 
exploration and refinement. Consideration of alternative threshold strategies tailored to the training 
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and test periods could lead to improved performance. Indeed, the preceding figures hint at the 
viability of a more flexible definition of this threshold during the training period. In this study, a 
lower threshold (250 m³/s) was employed during the training period, which resulted in a sufficient 
number of exceedances to effectively train the ML model. Subsequently, this trained model 
successfully projected and transferred the acquired knowledge to the test period, where higher 
thresholds of 580 m³/s were applied, aligning with the capacity of the hydraulic system. It is 
important to note that the threshold chosen for the training period should not only satisfy the Rule 
of 10 but also be as close as possible to the hydraulic system's actual capacity. 

As mentioned earlier, the choice of the cut-off value plays a crucial role in balancing the trade-
off between false positive and true positive rates. It is important to note that the training process 
itself is independent of this value (refer to Equation 2). The receiver operating characteristic (ROC) 
curve, introduced by Spackman (1989), is the typical approach for a comprehensive analysis of the 
model's performance across different cut-off values, aiding in the decision-making process. This 
curve is displayed in Figure 6. The horizontal axis is the false positive rate (FPR), which is the ratio 
of the false positives to the number of real negative cases in the data, and the vertical axis is the true 
positive rate (TPR), which is the ratio of the true positives to the number of real positive cases in the 
data. 

 

Figure 6. The ROC curve. 

According to Figure 6, for this specific case study, the TPR can reach 100% for a 1.2% FPR. 
These rates can be achieved with a cut-off value equal to 0.15 for the test period (Figure 7). 
Whereas the maximum F1 score (an evaluation score for classification algorithms that balances 
between the true positives, false positives and false negatives) is achieved with a cut-off value equal 
to 0.23, which was used in Figure 4 and Figure 5. This cut-off value results in TPR and FPR values 
equal to 42% and 0.35% respectively. 

The TPR of 42% indicates significant room for improvement in terms of performance. Similarly, 
the FPR, although relatively low at 0.35%, corresponds to approximately 31 false positive signals 
per year. However, when evaluating operational reliability, it is crucial to consider the false alarm 
rate. In Figure 5, which depicts the exceedances during the test period (slightly longer than 1 year), 
there are 32 false positives (note that multiple circles may appear as a single one due to proximity). 
Nevertheless, the primary objective is to reliably predict dangerous events rather than precisely 
forecasting their exact timing and duration. Upon closer examination of Figure 5, the false alarm 
rate is actually 25%. Therefore, when assessing the performance of an early warning system, it is 
essential to consider not only the FPR and TPR values but also evaluate them in conjunction with a 
schematic representation of the exceedances (e.g., Figures 4 and 5). 
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Figure 7. True positive and false positive rates for various cut-off values for the test period. 

4. CONCLUSIONS 

In this study, a machine learning model was used to process the results of a hydrological model 
with the aim of extracting alarm signals that can be used in an early warning system. The 
application of the model in a case study demonstrated that the machine learning model improves the 
reliability of predictions compared to those obtained directly and solely from the hydrological 
model. In this particular application, and based on a previous study, this improvement is likely not 
due to the reduced performance of the hydrological model but rather due to the objective function 
used in the calibration of the hydrological model that rewards the model's accuracy across all ranges 
of flows. Therefore, the proposed approach allows for the use of ready-made hydrological models, 
as configured and calibrated for another application (e.g., water resources management), and their 
direct implementation in an early warning system. 

The discharge threshold that distinguishes between dangerous and trivial events is typically 
determined based on the specific characteristics of the hydraulic system being studied, such as the 
capacity of a critical cross-section. However, dangerous events may be very rare, making it 
challenging to effectively train the machine learning (ML) model. In this study, a lower discharge 
threshold was employed during the ML training period to ensure an adequate number of events. 
Subsequently, the ML model was applied in the test period using the discharge threshold that 
corresponds to the actual dangerous levels. This approach proved successful in training the ML 
model and enabled accurate risk projections for higher discharge thresholds. 

As for future research, the proposed approach should be compared with other methods of early 
warning systems (e.g., pure machine learning systems or data-driven statistical systems) to identify 
further weaknesses and comparative advantages. Speaking of performance, during the test period, 
the ML model exhibited a false positive alarm rate of 25%. Additionally, there was a false negative 
observed during the training period. It is crucial to recognize that early warning systems alone 
cannot provide 100% reliability in predicting natural disasters, as there will always be factors that 
can hinder their effectiveness. Therefore, the primary line of defence should always be the properly 
designed and implemented civil engineering works, which serve as the cornerstone of disaster 
prevention and mitigation efforts. 
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