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Abstract:  Lumped runoff-rainfall models require a single time series of precipitation to simulate the runoff at the outlet of a 
watershed. When two or more precipitation gauge stations are available at different locations of the basin, their 
observations must be integrated into spatial average time series. Application of various methods of spatially averaged 
precipitation affects the estimation of areal precipitation and the performance of lumped models. Hence, to evaluate 
the suitability of each method, a selected model must be calibrated and validated. This process can be avoided when 
the information content of the spatially averaged precipitation is evaluated before the simulation. This is because, 
information decreases while estimating areal precipitation, since the initial set of time series is compressed into a 
single areal time series. The more information is retained after the act of spatially averaging, the more suitable the 
spatial distribution is. Estimates of the information content of a set of time series can result from Claude Shannon’s 
Theory of Information. Moreover, unique spatial distributions may occur by minimizing the information drop that 
arises while estimating areal precipitation. In the present paper, the suitability of different averaging methods is 
evaluated by calibrating and validating five lumped models and comparing these results to the computed information 
drop. Furthermore, the informational content of models’ input data is computed, and its relationship with the 
modeling performance is studied. 
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1. INTRODUCTION 

Precipitation data at different gauge stations located in a watershed can be used to estimate 
spatially averaged areal precipitation time series, P, which could be used as input to a lumped 
hydrological model. This is mostly achieved by considering the average areal rainfall time series, P, 
equal to the weighted average value of the set of precipitation time series. Therefore, if a weight 
value wi is assigned to each station, the following simple equation holds, 

N

i i
i 1

P w P
=

=∑  (1) 

where Pi is the precipitation time series of the i-th station and N is the total number of rainfall 
stations. In that sense, each unique combination of stations’ weight values is a different spatial 
distribution of the precipitation data. Therefore, the spatial distribution selected before the 
hydrological simulation has a significant effect on the performance of the lumped model, since it 
affects a major forcing time series. This poses the following question: which spatial distribution of 
precipitation data is the most suitable for a specific watershed? 

A typical method used in many cases is the Thiessen method, according to which Thiessen 
polygons are drawn to divide the basin into sub-areas exclusively corresponding to a single station. 
Then, the weight value wi of each station is proportional to the area of its polygon. An alternative 
simpler distribution occurs when the weights of all stations have the same value. In that case, 
equation (1) is simplified to the definition of numeric average, and for i=1…N, it holds wi=1/N. 
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Finally, the naïve approach is to select one precipitation time series from a single station as the most 
representative for the watershed.  

Each spatially averaging precipitation method over a watershed can be evaluated by calibrating 
the model to fit the observed runoff. A method that leads to poor calibration, according to specific 
criteria, is unsuitable, whereas the opposite is valid. Therefore, a suitable method can be any 
combination of weights that performs adequately when the calibration of the model is performed. 

In the present article, a novel method is proposed to determine spatial distribution of 
precipitation resulting by maximizing the meaningful mutual information contained in the set of 
spatially averaged precipitation and observed runoff time series. To achieve this, the concept of 
mutual information is defined according to the Theory of Information, developed by Claude 
Shannon (Shannon, 1948). A simple genetic algorithm is employed to search for the spatial 
distribution i.e., the weight vector that maximizes the mutual information between observed runoff 
and specially averaged precipitation (Findanis & Loukas, 2022).  The observed runoff time series is 
considered accurate.  This method is applied at two watersheds by calibrating and validating five 
lumped monthly models. 

2. CONCEPTS OF INFORMATION THEORY 

2.1 Shannon’s entropy 

In 1948, Claude Shannon (Shannon, 1948) defined the entropy H of a discrete random variable X 
that adheres to the Probability Mass Function (PMF), P(X), as follows: 

N

i 2 i
i 1

H P(x ) log P(x )
=

= −∑  (2) 

The values of variable X are represented by xi, where i ranges from 1 to N. The entropy is 
measured in Bits when the base of the logarithm in equation (2) is 2, in Nats when the base is e, and 
in Harleys when the base is 10. Equation (2) defines the entropy of a probability mass function 
P(X), which can be used to determine the uncertainty of the event controlled by the same PMF. A 
narrower PMF has lower entropy than a wider one, meaning that less uncertain events have less 
entropy. In the case where an event has N outcomes that are equally probable, its uncertainty H is 
equal to: 

2H log N=  (3) 

Equation (3) is derived from equation (2) by assigning P(xi)=1/N for every i. Furthermore, 
equation (3) implies that when an observer seeks information about the outcome of an event with 
equal probabilities, they must look for a minimum of H binary questions to obtain the necessary 
information. In a uniform PMF, where there is no prior knowledge about the most probable 
outcome, the entropy is at its maximum. Thus 

20 H(X) log N≤ ≤  (4) 

Note that, a time series is a set of ordered observations that contain information. Since the 
uncertainty of an event that has already occurred is zero, the information gained by observing it 
must be equivalent to the entropy of the prior probability density function (pdf) of that event. 
Hence, recorded events do carry information, and this also holds for a time series, whether it 
comprises observed events or simulated values. 
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2.2 Joint entropy of a complex source 

Suppose there is an information source that generates N events, drawn from a discrete set X 
according to a Probability Mass Function (PMF) Px. This source can be denoted as (X, PX), and its 
entropy H(X) can be estimated using equation (2). A hydrological model or a watershed can be a 
case of such a source. In the same manner, a second information source (Y, PY) will have entropy 
equal to H(Y). The system consisting of sources (X, PX) and (Y, PY) forms another information 
source, with events belonging to the set XY. This complex source is represented by (XY, PXY), 
where PXY is the joint probability mass function of variables X and Y. The joint entropy of this 
discrete complex source is given by the following equation: 

N M

i j 2 i j
i 1 j 1

H(X,Y) P(x , y ) log P(x , y )
= =

= −∑∑  (5) 

and the following inequality always is valid, 

H(X) H(Y) H(X,Y)+ ≥  (6) 

Equation (6) is an equality if X and Y are independent. In cases in which source X and Y are 
interdependent, the act of observing events produced by source Y can reduce the uncertainty 
associated with source X. The entropy of source X after such an observation is referred to as the 
conditional entropy, denoted by H(X|Y). Mathematically, conditional entropy is defined as: 

N M
i j

i j 2
i 1 j 1 i

P(x , y )
H(X | Y) P(x , y ) log

P(x )= =

= −∑∑  (7) 

2.3 Differential entropy 

It is possible to apply the concept of entropy to a continuous random variable X that follows a 
probability density function p(X). The probability of X falling within a particular interval of width 
dX is equal to p(X)dX. Therefore, equation (2) can be expressed as: 

[ ]2 2
X

H(X) p(X) log p(X) dX log dX= − −∫  (8) 

or 

2H(X) h(X) log dX= −  (9) 

The integral of equation (8) is referred to as differential or continuous entropy and is denoted by 
h(X). Unlike Shannon entropy, h(X) does not represent a valid measure of uncertainty and holds no 
physical meaning. Equation (9) implies that the Shannon entropy of a continuous density 
distribution is infinite, since 2log dX  equals to -∞. However, the differential entropy of a 
continuous variable is finite. 

For two continuous variables X and Y, the bivariate joint differential entropy is given by the 
equation: 

[ ]2
X Y

h(X,Y) p(X,Y) log p(X,Y) dXdY= −∫ ∫  (10) 
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Thus, for bivariate differential entropy h(X,Y) and the respective Shannon entropy H(X,Y), the 
following relationship holds: 

2 2H(X,Y) h(X,Y) log dX log dY= − −  (11) 

2.4 Bivariate mutual information 

Two variables X and Y, which are statistically dependent, contain mutual information. For 
instance, time series of precipitation and runoff, contain mutual information because precipitation 
causes runoff. Mutual Information between variables X and Y is denoted by I(X,Y) and it is a non-
negative quantity because of equation (6). In the case that X and Y are discrete variables, 

I(X,Y) H(X) H(Y) H(X,Y)= + −  (12) 

whereas, if X and Y are continuous variables, 

I(X,Y) h(X) h(Y) h(X,Y)= + −  (13) 

Furthermore, when X and Y are statistically independent variables, they do not share mutual 
information, i.e. I(X,Y)=0. Note that mutual information does not vary under reparameterization of 
the variables (Kraskov et al. 2004). Hence, if X ' F(X)=  and Y ' G(Y)= , then I(X,Y) I(X ',Y ')= . 

Figure 1 displays a Venn diagram representing a pair of informational sources. The area where 
the two sources overlap can be considered as the intersection of the two sources, which represents 
mutual information. On the other hand, the entire area covered by both sources represents their 
union, which represents joint entropy. 

 

Figure 1. Depiction of sources X and Y. The marginal entropy of X is represented by the red circle, while the blue circle 
represents the marginal entropy of Y. The mutual information of variables X and Y is indicated by the intersection of the 

two circles. Similarly, the joined entropy of X and Y is represented by the union of the two circles. The areas that 
exclusively belong to one variable symbolize the conditional entropies of X given Y H(X|Y) and of Y given X H(Y|X). 

2.5 Multivariate mutual Information 

Runoff at a particular time step depends on previous time steps of the precipitation time series. 
Bivariate mutual information considers only the dependence between runoff and precipitation in the 
same instance of time. For this reason, a more realistic measure of information content can be 
obtained by computing the multivariate mutual information between lagged time series of rainfall 
and runoff. A lagged version of a time series has the values of the original time series shifted by a 
time step. If the precipitation time series is P={P0, P1, P2,… PN}, we define its lagged version as  
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Pt-1={P1, P2, P3,… PN+1}. The multivariate mutual information between the set of time series  
X={P, Pt-1, … Pt-C} and runoff Y, where C is an integer, is defined as, 

I( ;Y) h( ) h(Y) h( ,Y)= + −X X X  (14) 

Relationship (14) is similar to equation (13) with the difference that h(X) and h(X,Y) are 
multivariate differential entropies because set X contains C+1 time series: the integrated 
precipitation time series P and C lagged versions of it. 

To estimate a multivariate differential entropy, an Independent Component Analysis is needed to 
find the mixing matrix A and the set S of independent signals (Gong et al., 2013) that satisfy the 
following linear transformation: 

Τ= ⋅X S A  (15) 

If S and A are found, then the multivariate differential entropy is estimated as (Cover & 
Thomas, 2006): 

2h( ) h( ) log det( )= +X S A  (16) 

Since signals S are independent, it is: 

i
i

h( ) h(S )=∑S  (17) 

Different mixing matrices A can satisfy equation (15), leading to slightly different values of 
h(X). Thus, computation of multivariate mutual information can be unstable because ICA must be 
performed twice, to estimate h(X) and h(X,Y). To alleviate this problem multiple estimations of 
I(X;Y) are performed and an average value is accepted as its true value. 

2.6 Computing univariate and bivariate differential entropies 

The main advantage of differential entropy is having a finite value for continuous variables, like 
rainfall or runoff, whereas Shannon Entropy is infinite for continuous variables. By definition, for 
the univariate case, 

[ ]2
X

h(X) p(X) log p(X) dX= −∫  (18) 

Hence, the right-hand integral must be computed without explicitly knowing the probability 
density function of X, which is inferred from the observed values of the respective time series. 
According to Gupta and associates (Gupta et al., 2021), by dividing the domain of X into M 
equiprobable intervals, whose edges are the quantiles of time series X, the following approximation 
occurs: 

ip(X) x 1/ M∆ ≈  (19) 

where Δxi is the width of the i-th interval. The integral of equation (18) is approximated as a finite 
sum. Thus, 

M

i 2
i 1

h(X) p(X) x log p(X) 
=

≈ − ∆∑  (20) 
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Due to relationship (19), equation (20) may be re-written as: 

M

2 2 i
i 1

1h(X) log M log x
M =

≈ + ∆∑  (21) 

Equation (21) is used to estimate univariate differential entropy by locating the quantiles of X. 
Similarly, bivariate differential entropy can be computed by dividing the 2D domain into two-

dimensional equiprobable bins using an adaptive grid scheme (Hoshen et al. 2013). If L+1 is the 
number of quantiles along both axes X and Y, implying that the total number of two-dimensional 
bins is L2, the following approximation holds: 

2
i jp(X,Y) x y 1/ L∆ ∆ =  (22) 

because each portion of the domain has length Δxi, width Δyi, and probability of occurrence 1/L2. 
Hence, equation (10) is written as: 

L L
2

2 2 i j2
i 1 j 1

1h(X,Y) log L + log x y
L = =

≈ ∆ ∆∑∑  (23) 

As a result, the utilization of the adaptive grid method enables the estimation of the bivariate 
differential entropy h(X,Y) through the application of equation (23). 

3. APPLICATION 

3.1 Description of hydrological basins 

The Pinios River in Thessaly, Greece, originates from the Pindos mountain range and flows into 
the Aegean Sea. This paper focuses on studying two neighboring sub-watersheds of the Pinios 
River basin, Mouzaki and Pili watersheds, which have areas of 144.1 km2 and 132.2 km2, 
respectively (Figure 2). These neighboring watersheds have similar geomorphic and hydroclimatic 
characteristics and their relatively small size makes them suitable for the use of lumped 
hydrological models. Both basins do not receive runoff from upstream basins. The mean monthly 
temperature in this area varies significantly throughout the year, ranging from a minimum 
temperature of -2°C to a maximum temperature of 30°C. The average annual precipitation in the 
area is about 1400 mm, but it is unevenly distributed spatially and temporally. Mouzaki watershed 
has an average, maximum, and minimum elevation of 816 m, 1972 m, and 194 m, respectively, 
whereas, Pili watershed has an average, maximum, and minimum elevation of 957 m, 1872 m, and 
264 m, respectively. The mean annual runoff of Mouzaki watershed is about 826 mm, For Pili 
watershed, the mean annual runoff equals 1128 mm. Both basins are predominantly covered by 
forests, meadows, and cultivated areas, with urban areas covering an inconsequential percentage of 
their total area. 

3.2 Available data 

Monthly runoff time series are available at the outlet of Mouzaki watershed for the period of 
10/1960 – 9/1994, except for a missing data period ranging from 10/1985 to 9/1987. Additionally, 
monthly measurements of precipitation were recorded at five (5) stations for the same period, 
whereas monthly temperature was measured at the Argithea station. The position and elevation of 
these stations are presented in Table 1. The Thiessen method was employed to partition the surface 
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of the basin into sub-areas (Thiessen polygons), with each sub-area dominated exclusively by one 
precipitation station. Table 1 displays the surface of every Thiessen polygon and its corresponding 
proportion in relation to the overall watershed area. Similarly, monthly observations of runoff are 
available for the entire period of 10/1960 – 9/1993 at the outlet of Pili watershed. Monthly 
precipitation and temperature are measured at six and three stations, respectively, for the same 
period, as shown in Tables 2 and 3. 

   

Figure 2. Map of Mouzaki and Pili watersheds and the location of meteorological stations.  The outlets of the 
watersheds are marked by white dots (Findanis & Loukas, 2022). 

The observed data, containing records of runoff, precipitation, and temperature, for both 
watersheds, are divided into two separate data sets. The first data set covering the period of 
10/1960-09/1982 is employed for the calibration of the hydrological models. The second data set 
consisting of the remaining records is utilized to validate the models. Thus, the validation period for 
Mouzaki watershed ranges from 10/1982 to 09/1994, whereas for Pili watershed ranges from 
10/1982 to 09/1993. 

 
Table 1. The rainfall stations inside or near Mouzaki watershed. 

Rainfall Station X (GGRS87) Y (GGRS87) Z (m) Thiessen Polygon 
Area (km2) Percentage of Thiessen area (%) 

Argithea 288367.56 4358234.50 980 34.62 24.1 
Drakotripa 293185.00 4365363.00 680 52.11 36.3 
Mpezoula 302639.31 4352821.00 901 17.45 12.2 
Morfovouni 305915.00 4357630.00 780 17.08 11.9 
Mouzaki 298900.00 4367000.00 226 22.35 15.6 

 
Table 2. The rainfall stations inside or near Pili watershed. 

Rainfall Station X (GGRS87) Y (GGRS87) Z (m) Thiessen Polygon 
Area (km2) Percentage of Thiessen area (%) 

Argithea 288367.56 4358234.50 980 10.63 8.0 
Drakotripa 293185.00 4365363.00 680 29.75 22.5 
Elati 287748.00 4376618.00 900 30.88 23.4 
Petrouli 282626.50 4379493.00 1160 1.21 0.9 
Stournareika A 283294.00 4371187.00 860 47.25 35.7 
Stournareika B 283300.00 4371287.00 860 12.50 9.5 
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Table 3. The temperature stations inside or near Mouzaki and Pili watersheds. The Thiessen polygon area and the 
respective percentage corresponds to Pili watershed. 

Temperature 
Station X (GGRS87) Y (GGRS87) Z (m) Thiessen Polygon 

Area (km2) Percentage of Thiessen area (%) 

Argithea 288367.56 4358234.50 980 76.69 58.5 
Vakari 273365.00 4375174.00 1150 45.94 35.0 
Polineri 273040.00 4364074.00 730 8.48 6.5 

3.3 Evaluation of spatial distribution scenarios 

In Tables 4 and 5 the spatially averaged methods (or distribution scenarios) examined for 
Mouzaki and Pili watersheds, respectively, are presented. For each scenario, the information Ω 
contained in the integrated dataset is estimated and the bivariate mutual information between the 
integrated rainfall time series P and the observed runoff Q is calculated. Ω is the multivariate 
mutual information between t 1 t 2 t 3 t 4P,  P ,  P ,  P ,  P− − − − and Q, i.e., 

( ;Q) h( ) h(Q) h( ,Q)Ω = Ι = + −P P P  (24) 

where P={P, Pt-1, Pt-2, Pt-3, Pt-4} is the set containing integrated time series P and its lagged versions. 
For the present study, it is assumed that runoff at time step t=t0 does not depend on the rainfall at 
time steps t<t0-4, i.e. C=4. Additionally, for each basin, equation (14) is used to compute the 
information Α of the dataset consisted of the rainfall time series of all stations and the runoff 
observed time series at the outlet. It holds, 

1 NI( ,... ;Q)Α = P P  (25) 

where Pi= t 1 t 2 t 3 t 4
i i i i i{P ,  P ,  P ,  P ,  P }− − − − is the set including the precipitation time series of a specific 

station and its four lagged versions. For Mouzaki (N=5), it is estimated that A=1.296 bits. For Pili 
(N=7), A=1.003 bit. Hence, A is the information of the dataset before its compression, Ω is the 
information of the compressed dataset, the difference A-Ω is the information lost due to the act of 
integration and the ratio Ω/Α is the compression ratio. In every case, Ω/Α<1 suggesting that the 
compression of the original precipitation dataset {P1,…, PN, Q} into the integrated dataset {P,Q} is 
lossy: the original dataset cannot be recovered if only {P,Q} is known. 

Weights w1 to w5 in Table 4 represent the effect of the five precipitation stations mentioned in 
Table 1 on the integrated precipitation for Mouzaki watershed. In the first scenario, these weights 
are equal to the percentages of the basin according to the Thiessen polygons. Scenario 2 uses the 
simple arithmetic average method. In scenarios 3 to 7, the areal averaged precipitation is equal by 
selecting a certain single precipitation station as representative of the spatially averaged 
precipitation over the watershed area. The weights of scenario 8 occurred by maximizing the 
bivariate mutual information I(P,Q), which is a function of weights w1 to w5 and serves as an 
approximation of Ω since it can be optimized more easily. Conversely, minimizing I(P,Q) yields the 
scenario 9, in which the dominant stations, Argithea and Drakotrypa, have a low weight value. 

In Table 5, the weights of spatial distribution scenarios for Pili watershed are presented. 
Weights w1 to w6 correspond to the rainfall stations in Table 2, while w7 represents the effect of the 
Mouzaki precipitation station from Table 1, included as a control station. Since the Mouzaki station 
is a distant station from Pili watershed, it is known that it should not affect the runoff. 
Consequently, the hydrological models are expected to perform poorly in scenario 9. Scenario 1 
uses the Thiessen polygon method, and scenario 2 employs the numeric average method. Scenarios 
3 to 9 correspond to selecting only one rainfall station. Scenarios 10 and 11 arise from maximizing 
and minimizing the function I(P,Q), respectively. Note that Ω and I(P,Q) do not necessarily share 
the same optima, and in scenario 11, the genetic algorithm used for optimizing I(P,Q) failed to find 
its global minimum, since scenarios 4, 5 and 9 have a lower value of I(P,Q). For Pili watershed, the 
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temperature time series used as input for the models is obtained by applying the Thiessen method to 
the temperature stations listed in Table 3. No other spatially averaging methods for temperature has 
been applied.  
 

Table 4. Weights of areal averaging methods and values of the information functions for each scenario for Mouzaki 
watershed. 

Scenario # w1 w2 w3 w4 w5 Ω (bits) I(P,Q) 
(bits) 

A-Ω 
(bits) Ω/Α 

1 0.241 0.363 0.122 0.119 0.156 0.989 0.526 0.307 0.763 
2 0.200 0.200 0.200 0.200 0.200 1.004 0.515 0.292 0.775 
3 1 0 0 0 0 1.000 0.342 0.296 0.772 
4 0 1 0 0 0 0.644 0.227 0.652 0.497 
5 0 0 1 0 0 0.822 0.273 0.474 0.634 
6 0 0 0 1 0 0.375 0.030 0.920 0.290 
7 0 0 0 0 1 0.515 0.259 0.781 0.397 
8 0.385 0.267 0.074 0.048 0.226 1.085 0.646 0.210 0.838 
9 0.000 0.007 0.019 0.282 0.692 0.501 0.304 0.794 0.387 

 
Table 5. Weights of areal averaging methods and values of the information functions for each scenario for Pili 

watershed. 

Scenario # w1 w2 w3 w4 w5 w6 w7 Ω(bits) I(P,Q) 
(bits) 

A-Ω 
(bits) Ω/Α 

1 0.080 0.225 0.234 0.009 0.357 0.095 0 0.877 0.567 0.125 0.875 
2 0.167 0.167 0.167 0.167 0.167 0.167 0 0.808 0.505 0.195 0.805 
3 1 0 0 0 0 0 0 0.815 0.320 0.187 0.813 
4 0 1 0 0 0 0 0 0.394 0.192 0.608 0.393 
5 0 0 1 0 0 0 0 0.506 0.183 0.497 0.505 
6 0 0 0 1 0 0 0 0.520 0.372 0.483 0.519 
7 0 0 0 0 1 0 0 0.897 0.355 0.106 0.894 
8 0 0 0 0 0 1 0 0.725 0.341 0.278 0.723 
9 0 0 0 0 0 0 1 0.282 0.030 0.721 0.281 
10 0.083 0.286 0.097 0.098 0.226 0.159 0.051 0.859 0.687 0.144 0.857 
11 0.000 0.000 0.000 0.664 0.000 0.001 0.335 0.504 0.213 0.498 0.503 

3.4 Calibration and validation of models 

Having estimated Ω, for each combination of scenarios and basins, the lumped monthly 
parametric models, UTHBAL (Loukas et al., 2007), WBM (Xiong and Guo, 1999), Giakoumakis 
(Giakoumakis et al., 1991), Abulohom (Abulohom et al., 2001), and GR2M (Mouelhi, 2003) have 
been used in this study, The hydrological models have been calibrated and validated for the two 
study basins to examine the relationship between Ω and the performance of the models. The 
necessary inputs for these models are precipitation, temperature, and potential evapotranspiration 
time series. The Thornthwaite method was used to estimate potential evapotranspiration. UTHBAL 
and Abulohom models have of five (5) parameters, while WBM, Giakoumakis, and GR2M models 
have two (2) parameters. Note that a snow accumulation and snowmelt algorithm developed by 
Loukas and associates (Loukas et al., 2007) and based on the work of Semadeni-Davies (Semadeni-
Davies, 1997) was integrated into each model, increasing their parameters’ number by one (1). 

All models have been calibrated using a simple genetic algorithm. This algorithm searches in the 
parametric domain for the point that maximizes a selected objective function, by imitating the 
evolution and the adjustment of species to their natural environment. Simultaneously, the algorithm 
protects the best solutions to the optimization problem from fading during the passage of 
generations. The objective function, employed in the present study for calibrating the models, is the 
Nash-Sutcliffe Efficiency (NSE). After calibrating the models, the NSE corresponding to the 
validation period will be evaluated. Calibration and validation results are presented in Tables 6 and 
7 for Mouzaki and Pili watersheds, respectively. 
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Table 6. Calibration and validation results of the five hydrological models for Mouzaki watershed. 

Scenario # 
UTHBAL WBM Giakoumakis Abulohom GR2M 

Cal Val Cal Val Cal Val Cal Val Cal Val 
1 0.708 0.703 0.694 0.703 0.648 0.530 0.663 0.626 0.723 0.702 
2 0.699 0.736 0.677 0.715 0.632 0.547 0.649 0.662 0.736 0.734 
3 0.732 0.664 0.726 0.699 0.641 0.537 0.655 0.610 0.733 0.681 
4 0.551 0.604 0.499 0.528 0.400 0.265 0.412 0.343 0.488 0.438 
5 0.514 0.666 0.479 0.659 0.429 0.400 0.435 0.525 0.548 0.600 
6 0.508 0.389 0.372 0.618 0.258 0.402 0.303 0.499 0.552 0.494 
7 0.642 0.612 0.585 0.617 0.452 0.292 0.491 0.457 0.617 0.560 
8 0.736 0.618 0.727 0.719 0.691 0.536 0.707 0.655 0.748 0.722 
9 0.602 0.674 0.562 0.647 0.459 0.388 0.490 0.493 0.648 0.597 

 

Table 7. Calibration and validation results of the five hydrological models for Pili watershed. 

Scenario # 
UTHBAL WBM Giakoumakis Abulohom GR2M 

Cal Val Cal Val Cal Val Cal Val Cal Val 
1 0.725 0.720 0.702 0.727 0.673 0.621 0.700 0.703 0.731 0.758 
2 0.704 0.724 0.678 0.746 0.665 0.631 0.673 0.708 0.728 0.778 
3 0.683 0.698 0.676 0.707 0.617 0.590 0.656 0.623 0.694 0.738 
4 0.514 0.594 0.475 0.571 0.374 0.292 0.401 0.378 0.471 0.527 
5 0.693 0.770 0.675 0.749 0.581 0.581 0.627 0.652 0.679 0.765 
6 0.534 0.662 0.497 0.651 0.439 0.446 0.444 0.566 0.581 0.684 
7 0.664 0.574 0.662 0.613 0.574 0.437 0.620 0.493 0.662 0.597 
8 0.545 0.534 0.520 0.487 0.491 0.295 0.497 0.283 0.570 0.257 
9 0.541 0.598 0.447 0.553 0.337 0.323 0.360 0.369 0.561 0.651 
10 0.687 0.714 0.662 0.722 0.643 0.606 0.651 0.677 0.713 0.755 
11 0.544 0.613 0.499 0.638 0.433 0.471 0.448 0.547 0.614 0.711 

4. DISCUSSION 

The results in Tables 6 and 7 indicate that the Thiessen polygon method (Scenario 1) leads to 
high values of NSE for the calibration and validation period of almost all models for both study 
watersheds. Scenario 2, the mean arithmetic method, may outperform the Thiessen method, 
especially during the validation period. For Mouzaki watershed, scenario 8 corresponding to the 
maximum value of Ω, has the highest values of NSE for the calibration period of each model. On 
the contrary, this is not observed for scenario 7 of Pili watershed, where only the Stournareika A 
precipitation station is considered and Ω is maximum, because all models perform adequately. This 
may occur since, at a fundamental level, Ω and NSE express, respectively, the input and the output 
of models. Hence, their relationship is not linear, but it depends on the structure of models and the 
value of their parameters. 

Moreover, selecting only one precipitation station does not guarantee a good fit of simulated to 
observed runoff.  To be more specific, models perform satisfactorily for the single-station scenario 
3 for both study watersheds, where only the Arghithea precipitation station is considered, and for 
scenario 5 of basin Pili, where the average areal precipitation is equal to the precipitation of Elati 
station, because, in these two scenarios Ω, is relatively high. But in other single-station scenarios, 
like scenarios 4, 5, 6 of Mouzaki and 4, 9 of Pili watershed, models perform poorly, due to the low 
value of meaningful information Ω. In scenario 8 of Pili watershed, all models exhibit their worst 
performance, compared to the rest scenarios of the same watershed, while their inputted information 
is not too low (Ω=0.725 bits). This happens for the same reason why models do not show their best 
performance for scenario 7 of Pili: Although Ω drives NSE, the model structure and its selected 
parameters define their exact relationship. Figure 3 presents the results of Tables 6 and 7.  
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Figure 3. NSE criterion versus information Ω for calibration and validation periods of Mouzaki and Pili watersheds. 

To summarize, the relationship Ω~NSE exists but it is weak and non-linear. This is true because: 
a) NSE describes models’ performance, whereas Ω measures their information input, b) An accurate 
calculation of Ω is challenging due to the required Independent Component Analysis, c) 
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Information due to temperature variation was ignored. The main conclusion from Figure 3 is that a 
high value of Ω leads to satisfactory NSE values, but a low value of Ω does not necessarily 
correspond to low NSE values. Thus, a spatially averaging method of precipitation data, which 
outperforms the Thiessen polygon method, can occur by maximizing Ω. 

The main advantage of the Thiessen polygon method over maximizing Ω is its simplicity. 
Maximizing Ω is challenging, requires an optimization algorithm, and cannot be done directly 
because the algorithm optimizes the function Ι(P,Q), not Ω itself. On the other hand, using Ω to 
construct spatial distribution scenarios of precipitation has more physical meaning: The hydrologist 
tries to construct a single time series of precipitation which is the most valuable in terms of 
information. Also, the proposed methodology may give an alternative, more theoretical, 
interpretation of empirical facts. For instance, in scenario 6 of Mouzaki watershed and scenario 9 of 
Pili watershed, where Ω is minimum and distant stations with small or zero Thiessen percentages 
have weight values equal to one, all models perform poorly as expected. This can be interpreted 
empirically as “distant precipitation stations should not affect the runoff” or accordingly to the 
proposed framework as “distant stations deprive models of useful information”. 

Finally, models UTHBAL, WBM, and GR2M show high NSE values for both calibration and 
validation periods if enough information is provided to them. Giakoumakis is the model with the 
worst performance from all hydrological models used.  
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